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We also interpret new stress data .| éﬁ_; Figure 4. (a) Shear-wave splitting measured for the 2018-9 Newdigate earthquake sequence.
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AniSOtI’OpiC Poro- elasticity ( APE) (Cz;: 1;«)7;3 explain this with anisotropic poroelasticity

The APE model does predict 90° polarisation flips in the case of an
When a shear-waves propagates through an anisotropic medium it is split into, = Aligned fluid-filled fractures efficiently generate seismic anisotropy with a overpressured pore fluid (Zatespin et al., 1997). Invoking APE, however, requires

orthogonally polarised, fast and slow shear-waves which are separated by a  hexagonal symmetry. For ditferential horizontal stresses, where 0, and 0, are in ~ pore fluid pressures to be greater than Sy, (Figure 6) for the whole sequence!
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Figure 3. Example shear-wave  splitting Microcracks preferentially align overpressure cases. Here Sy = 12, Sy, = 6 and Syi,= 0. ’ > ’ ” ” > ” ’ ’
measurement made at RUSH. Input waveforms with Sy,... Measured ¢ due to the SR and SP are shear-waves polarised parallel and Figure 8. Shear-wave splitting measurements plotted over time. Bottom panel shows event depths

shown as radial-transverse components cracks is parallel to Sy« perpendicular to the plane of variation. and magnitudes reported by Hicks et al., (2019). Dashed lines show the main events in the swarm.



